A Deep-Learning Diagnostic Support System for the Detection of COVID-19 Using Chest Radiographs: A Multireader Validation Study

Objectives Materials and Methods Five publicly available databases comprising normal CXR, confirmed COVID-19 pneumonia cases, and other pneumonias were used. After the harmonization of the data, the training set included 7966 normal cases, 5451 with other pneumonia, and 258 CXRs with COVID-19 pneumonia, whereas in the testing data set, each category was represented by 100 cases. Eleven blinded radiologists with various levels of expertise independently read the testing data set. The data were analyzed separately with the newly proposed artificial intelligence–based system and by consultant radiologists and residents, with respect to positive predictive value (PPV), sensitivity, and F-score (harmonic mean for PPV and sensitivity). The χ2 test was used to compare the sensitivity, specificity, accuracy, PPV, and F-scores of the readers and the system. Results The proposed system achieved higher overall diagnostic accuracy (94.3%) than the radiologists (61.4% ± 5.3%). The radiologists reached average sensitivities for normal CXR, other type of pneumonia, and COVID-19 pneumonia of 85.0% ± 12.8%, 60.1% ± 12.2%, and 53.2% ± 11.2%, respectively, which were significantly lower than the results achieved by the algorithm (98.0%, 88.0%, and 97.0%; P
Source: Investigative Radiology - Category: Radiology Tags: Original Articles Source Type: research