Dl-butylphthalide inhibits rotenone-induced oxidative stress in microglia via regulation of the Keap1/Nrf2/HO-1 signaling pathway

Exp Ther Med. 2021 Jun;21(6):597. doi: 10.3892/etm.2021.10029. Epub 2021 Apr 9.ABSTRACTActivated microglia are a source of superoxide which often increases oxidative stress in the brain microenvironment, increase production of reactive oxygen species (ROS) and directly or indirectly lead to dopaminergic neuronal death in the substantia nigra. Thus superoxide contributes to the pathogenesis of Parkinson's disease (PD). Evidence suggests that mitochondria are the main source of ROS, which cause oxidative stress in cells. Levels of ROS are thus associated with the function of the mitochondrial complex. Therefore, protecting the mitochondrial function of microglia is important for the treatment of PD. Dl-butylphthalide (NBP), a compound isolated from Chinese celery seeds, has been approved by the China Food and Drug Administration for the treatment of acute ischemic stroke. Recently, NBP demonstrated therapeutic potential for PD. However, the mechanism underlying its neuroprotective effect remains unclear. The present study aimed to investigate the effect of NBP on rotenone-induced oxidative stress in microglia and its underlying mechanisms. The results demonstrated that NBP treatment significantly increased mitochondrial membrane potential and decreased ROS level in rotenone-induced microglia. Western blot analysis showed that NBP treatment promoted entry of nuclear respiratory factor-2 (Nrf2) into the nucleus, increased heme oxygenase-1 (HO-1) expression and decreased the level...
Source: Experimental and Therapeutic Medicine - Category: General Medicine Authors: Source Type: research