PI3K/AKT/mTOR and TLR4/MyD88/NF- κB Signaling Inhibitors Attenuate Pathological Mechanisms of Allergic Asthma

AbstractAsthma is an inflammatory airway disease wherein bronchoconstriction, airway inflammation, and airway obstruction during asthma attacks are the main problems. It is recognized that imbalance of Th1/Th2 and Th17/Treg is a critical factor in asthma pathogenesis. Manipulation of these with signaling molecules such as mTOR, PI3K, Akt, and MyD88 can control asthma. Mouse model of allergic asthma was produced and treated with ketamine, metformin, metformin and ketamine, triciribine, LY294002, and torin2. MCh challenge test, BALf's Eos Count, the IL-4, 5, INF- γ, eicosanoid, total IgE levels were determined. The MUC5a, Foxp3, RORγt, PI3K, mTOR, Akt, PU.1, and MyD88 gene expressions and histopathology study were done. Asthma groups that were treated with all six components had reduced Penh value, total IgE, IL-4 and IL-5 levels, MUC5a, RORγt, MyD88 and mTOR expression, goblet cell hyperplasia, and mucus hyper-secretion. The eosinophil percentage and Cys-LT level were decreased by metformin and ketamine, triciribine, LY294002, and torin2. The level of IFN-γ was increased in triciribine, LY294002, and torin2. Metformin, metformin and ketamine, tric iribine, LY294002, and torin2 reduced Akt and PI3K expression, peribronchial and perivascular inflammation, and increased expression of Foxp3. Torin2 had an effect on PU.1 expression. Inhibition of PI3K/AKT/mTOR and TLR4/MyD88/NF-κB signaling with targeted molecules can attenuate asthma pathology a nd play an important role in a...
Source: Inflammation - Category: Allergy & Immunology Source Type: research