Combined effects of a ketogenic diet and exercise training alter mitochondrial and peroxisomal substrate oxidative capacity in skeletal muscle

Am J Physiol Endocrinol Metab. 2021 Apr 12. doi: 10.1152/ajpendo.00410.2020. Online ahead of print.ABSTRACTKetogenic diets (KD) are reported to improve body weight, fat mass, and exercise performance in humans. Unfortunately, most rodent studies have used a low-protein KD, which does not recapitulate diets used by humans. Since skeletal muscle plays a critical role in responding to macronutrient perturbations induced by diet and exercise, the purpose of this study was to test if a normal-protein KD (NPKD) impacts shifts in skeletal muscle substrate oxidative capacity in response to exercise training (ExTr). A high fat, carbohydrate-deficient NPKD (16.1% protein, 83.9% fat, 0% carbohydrate) was given to C57BL/6J male mice for 6 weeks, while controls received a low fat diet with similar protein (15.9% protein, 11.9% fat, 72.2% carbohydrate). On week four of the diet, mice began treadmill training 5 days/week, 60 min/day for 3 weeks. NPKD-fed mice increased body weight and fat mass, while ExTr negated a continued rise in adiposity. ExTr increased intramuscular glycogen, while the NPKD increased intramuscular triglycerides. Neither the NPKD nor ExTr alone altered mitochondrial content; however, in combination, the NPKD-ExTr group showed increases in PGC-1α, as well as markers of mitochondrial fission and fusion. Pyruvate oxidative capacity was unchanged by either intervention, while ExTr increased leucine oxidation in NPKD-fed mice. Lipid metabolism pathways had the most notable...
Source: Am J Physiol Endocri... - Category: Endocrinology Authors: Source Type: research