Robotic-Assisted Unicompartmental Knee Arthroplasty Reduces Components' Positioning Differences among High- and Low-Volume Surgeons

J Knee Surg DOI: 10.1055/s-0041-1727115Robotic-assisted medial unicompartmental knee arthroplasty (mUKA) has been introduced to improve accuracy in implant positioning and limb alignment, overcoming the reported high failure rates of conventional UKA. Indeed, mUKA is a technically challenging procedure strongly related to surgeons' skills and expertise. The purpose of this study was to evaluate the likelihood of robotic-assisted surgery in reducing the variability of coronal and sagittal component positioning between high- and low-volume surgeons. We evaluated a prospective cohort of 161 robotic mUKA implanted between May 2018 and December 2019 at two high-volume robotic centers. Patients were divided into two groups: patients operated by “high-volume” (group A) or “low-volume” (group B) surgeons. We recorded intraoperative lower-limb alignment, component positioning, and surgical timing. Postoperatively, every patient underwent a radiographical protocol to assess coronal and sagittal femoral/tibial component alignment. Range of motion and other clinical outcomes were assessed pre- and 12 months postoperatively by using oxford knee score, forgotten joint score, and visual analog scale. Of 161 recruited knees, 149 (A: 101; B: 48) were available for radiographic analysis at 1 month, and clinical evaluation at 12 months. No clinical difference neither difference in mechanical alignment nor coronal/sagittal component positioning were found (p > 0.05). A significant...
Source: Journal of Knee Surgery - Category: Orthopaedics Authors: Tags: Original Article Source Type: research