Does the Gut Microbiome Contribute to Age-Related Anabolic Resistance

The gut microbiome is a highly varied collection of microbial populations that acts in symbiosis with the body to process food and provide needed metabolites. With age, there is a detrimental shift in these populations. Those generating useful metabolites, such as butyrate, diminish in number. Those capable of infiltrating tissue, generating inflammatory compounds, or otherwise interacting with the immune system to provoke chronic inflammation increase in number. Researchers have demonstrated that this is a meaningful process in short-lived species by transplanting a youthful gut microbiome into older individuals. In killifish, for example, this produces extension of life. In mice, it has been shown to beneficially change measures of metabolic aging. In aged humans, better health at a given age corresponds to a younger gut microbiome configuration. In today's open access review paper, researchers look at just one set of processes that may be influenced by the gut microbiome, those contributing to age-related anabolic resistance. Muscle growth depends on anabolism - the construction of proteins needed for cellular structures, new cells, and tissue mass - and an aged body does not produce the same level of anabolic response to stimuli such as exercise or increased protein intake. This leads to sarcopenia, the characteristic, steady loss of muscle mass over the years. Why does anabolic resistance arise with age? It is proposed that the changing populations of the gut micr...
Source: Fight Aging! - Category: Research Authors: Tags: Medicine, Biotech, Research Source Type: blogs