The Molecular Mechanisms of Mitochondrial Calcium Uptake by Calcium Uniporter

Yakugaku Zasshi. 2021;141(4):491-499. doi: 10.1248/yakushi.20-00204-1.ABSTRACTMitochondria play a role as intracellular calcium stores as well as energy conversion functions. Excessive calcium accumulation in mitochondria induces cell death and induces diseases such as ischemia-reperfusion injury. Mitochondrial calcium uptake is considered to be mediated by calcium uniporters, which have attracted much attention as potential drug targets. Although calcium uniporter was shown to function as an ion channel, the molecular mechanisms have long been unclear. In this decade, the molecular composition of the calcium uniporter complex was discovered; the calcium uniporter consists of the 7 subunits. Each subunit has no structural similarity to other Ca ion channels; thus, the novel molecular mechanism of the Ca2+ uptake by calcium uniporter is of interest. Although calcium uniporter is conserved in human to warm, yeast lack mitochondrial calcium uptake activity. In the previous study, various subunits of mammalian calcium uniporter were expressed in the yeast mitochondria. As a result, although the expression of each subunit alone did not affect on the mitochondrial calcium uptake activity, the co-expression of mitochondrial calcium uniporter (MCU) and essential MCU regulator (EMRE) enabled to reconstitute calcium uptake activity in yeast mitochondria. This indicated that MCU and EMRE are key factors of the calcium uptake activity in mitochondria. This yeast reconstitution technique ...
Source: Yakugaku Zasshi : Journal of the Pharmaceutical Society of Japan - Category: Drugs & Pharmacology Authors: Source Type: research