Prediction of Sepsis in COVID-19 Using Laboratory Indicators, Frontiers in cellular and infection microbiology

This study retrospectively investigated laboratory test data of 2,453 patients with COVID-19 from electronic health records. Extreme gradient boosting (XGBoost) was employed to build four models with different feature subsets of a total of 69 collected indicators. Meanwhile, the explainable Shapley Additive ePlanation (SHAP) method was adopted to interpret predictive results and to analyze the feature importance of risk factors.; Findings: The model for classifying COVID-19 viral sepsis with seven coagulation function indicators achieved the area under the receiver operating characteristic curve (AUC) 0.9213 (95% CI, 89.94-94.31%), sensitivity 97.17% (95% CI, 94.97-98.46%), and specificity 82.05% (95% CI, 77.24-86.06%). The model for identifying COVID-19 coagulation disorders with eight features provided an average of 3.68 ( ± ) 4.60 days in advance for early warning prediction with 0.9298 AUC (95% CI, 86.91-99.04%), 82.22% sensitivity (95% CI, 67.41-91.49%), and 84.00% specificity (95% CI, 63.08-94.75%).; Interpretation: We found that an abnormality of the coagulation function was related to the occurrence of sepsis and the other routine laboratory test represented by inflammatory factors had a moderate predictive value on coagulopathy, which indicated that early warning of sepsis in COVID-19 patients could be achieved by our established model to improve the patient ' s prognosis and to reduce mortality.
Source: Current Awareness Service for Health (CASH) - Category: Consumer Health News Source Type: news