Current trends and future perspectives for heart failure treatment leveraging cGMP modifiers and the practical effector PKG

J Cardiol. 2021 Apr 1:S0914-5087(21)00059-9. doi: 10.1016/j.jjcc.2021.03.004. Online ahead of print.ABSTRACTCyclic guanosine monophosphate (cGMP), an intracellular second messenger molecule synthesized by guanylated cyclases (GCs), controls various myocardial properties, including cell growth and survival, interstitial fibrosis, endothelial permeability, cardiac contractility, and cardiovascular remodeling. These processes are mediated by the main cGMP effector protein kinase G (PKG) activation of which exerts intrinsic protective responses against the adverse effects of neurohormonal stimulation and pathological cardiac stress. Therapeutic strategies that enhance cGMP levels and PKG activation have been used for heart failure, which can be executed by reducing natriuretic peptide (NP) proteolysis, enhancing cGMP synthesis, or blocking cGMP hydrolysis. Among these, reducing NP clearance with neprilysin inhibitor combined with angiotensin receptor blocker has been shown to greatly improve the prognosis of patients with heart failure with reduced ejection fraction (HFrEF) compared to the prognosis of patients on standard therapy using angiotensin-converting enzyme inhibitors. Moreover, in a recent phase III clinical trial, soluble GC-derived cGMP generation was shown to have potential efficacy in the management of HFrEF. Despite the clinical significance of cGMP/PKG signaling activated by either soluble or particulate GCs in heart failure, the differential signaling events down...
Source: Journal of Cardiology - Category: Cardiology Authors: Source Type: research