Disparate temperature-dependent virus –host dynamics for SARS-CoV-2 and SARS-CoV in the human respiratory epithelium

by Philip V ’kovski, Mitra Gultom, Jenna N. Kelly, Silvio Steiner, Julie Russeil, Bastien Mangeat, Elisa Cora, Joern Pezoldt, Melle Holwerda, Annika Kratzel, Laura Laloli, Manon Wider, Jasmine Portmann, Thao Tran, Nadine Ebert, Hanspeter Stalder, Rune Hartmann, Vincent Gardeux, Daniel Alpern, Bart Deplancke, Volker Thiel, Ronald Dijkman Since its emergence in December 2019, Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has spread globally and become a major public health burden. Despite its close phylogenetic relationship to SARS-CoV, SARS-CoV-2 exhibits increased human-to-human transmission dynamics, likely due to efficient early replication in the upper respiratory epithelium of infected individuals. Since different temperatures encountered in the human upper and lower respiratory tract (37°C and 33°C, respectively) have been shown to affect the replication kinetics of several respiratory viruses, as well as host immune response dynamics, we investigated the impact of temperatures during SARS-CoV-2 and SARS-CoV infection using the primary human airway epithelial cell culture model. SARS-CoV-2, in contrast to SARS-CoV, replicated to higher titers when infections were performed at 33°C rather than 37 °C. Although both viruses were highly sensitive to type I and type III interferon pretreatment, a detailed time-resolved transcriptome analysis revealed temperature-dependent interferon and pro-inflammatory responses specifically induced by SARS-CoV or SARS-...
Source: PLoS Biology: Archived Table of Contents - Category: Biology Authors: Source Type: research