A Role for Cellular Senescence in Brain Aging, and for Senolytics in the Reversal of Brain Aging

Senescent cells accumulate throughout the body with age, the result of an increased pace of creation and slowed pace of clearance. Senescent cells secrete a mix of inflammatory signals that disrupt tissue maintenance and function, and this contributes to the progression of degenerative aging. Clearing senescent cells with senolytic therapies has been shown to produce rejuvenation in mice, robust reversal of many different age-related conditions. That includes demonstrations of efficacy in animal models of neurodegenerative conditions such as Parkinson's disease and Alzheimer's disease. Senescent cells are not the whole of aging, but they are a large enough fraction of it to be most promising as a point of intervention. Aging of the brain can manifest itself as a memory and cognitive decline, which has been shown to frequently coincide with changes in the structural plasticity of dendritic spines. Decreased number and maturity of spines in aged animals and humans, together with changes in synaptic transmission, may reflect aberrant neuronal plasticity directly associated with impaired brain functions. In extreme, a neurodegenerative disease, which completely devastates the basic functions of the brain, may develop. While cellular senescence in peripheral tissues has recently been linked to aging and a number of aging-related disorders, its involvement in brain aging is just beginning to be explored. However, accumulated evidence suggests that cell senescence may play ...
Source: Fight Aging! - Category: Research Authors: Tags: Daily News Source Type: blogs