A thermoregulatory role of the medullary raphe in birds [RESEARCH ARTICLE]

Caroline Cristina-Silva, Luciane H. Gargaglioni, and Kenia Cardoso Bicego The brainstem region medullary raphe modulates non-shivering and shivering thermogenesis and cutaneous vasomotion in rodents. Whether the same scenario occurs in the other endothermic group, i.e. birds, is still unknown. Therefore, we hypothesised that the medullary raphe modulates heat gain and loss thermoeffectors in birds. We investigated the effect of glutamatergic and GABAergic inhibitions in this specific region on body temperature (Tb), oxygen consumption (thermogenesis), ventilation (O2 supply in cold, thermal tachypnea in heat) and heat loss index (cutaneous vasomotion) in one-week-old chicken exposed to neutral (31°C), cold (26°C) and heat (36°C) conditions. Intra-medullary raphe antagonism of NMDA glutamate (AP5; 0.5, 5 mM) and GABAA (bicuculline; 0.05, 0.5 mM) receptors reduced Tb of chicks at 31°C and 26oC, due mainly to an O2 consumption decrease. AP5 transiently increased breathing frequency during cold exposure. At 31°C, heat loss index was higher in the bicuculline and AP5 groups (higher doses) than vehicle at the beginning of the Tb reduction. No treatment affected any variable tested at 36oC. The results suggest that glutamatergic and GABAergic excitatory influences on the medullary raphe of chicks modulate thermogenesis and glutamatergic stimulation prevents tachypnea, without having any role in warmth-defence responses. A double excitation influence on the medull...
Source: Journal of Experimental Biology - Category: Biology Authors: Tags: RESEARCH ARTICLE Source Type: research