Biochemical characterization of a unique DNA polymerase A from the extreme radioresistant organism Deinococcus radiodurans

In this study, we systematically examined the enzymatic activities of DrPolA and characterized its unique features. DrPolA contains an N-terminal nuclease domain (DrPolA-NTD) and a C-terminal Klenow fragment (KlenDr). Compared with the Klenow fragment of E. coli Pol I, KlenDr shows higher fidelity despite the lacking of 3'-5' exonuclease proofreading activity and prefers double-strand DNA rather than Primer-Template substrates. Apart from the well-annotated 5'-3' exonuclease and flap endonuclease activities, DrPolA-NTD displays approximately 140-fold higher gap endonuclease activity than its homolog in E. coli and Human FEN1. Its 5'-3' exonuclease activity on ssDNA, gap endonuclease, and Holliday junction cleavage activities are greatly enhanced by Mn2+. The DrPolA-NTD deficient strain shows increased sensitivity to UV and gamma-ray radiation. Collectively, our results reveal distinct biochemical characteristics of DrPolA during DNA degradation and re-synthesis, which provide new insight into the outstanding DNA repair capacity of D. radiodurans.PMID:33727139 | DOI:10.1016/j.biochi.2021.02.014
Source: Biochimie - Category: Biochemistry Authors: Source Type: research