Inflammatory pathways in Alzheimer's disease mediated by gut microbiota

Ageing Res Rev. 2021 Mar 9:101317. doi: 10.1016/j.arr.2021.101317. Online ahead of print.ABSTRACTIn the past decade, numerous studies have demonstrated the close relationship between intestinal flora and the occurrence and development of Alzheimer's disease (AD). However, the specific mechanism is still unclear. Both the neuroinflammation and systemic inflammation serve as the key hubs to accelerate the process of AD by promoting pathology and damaging neuron. What's more, the gut microbiota is also crucial for the regulation of inflammation. Therefore, this review focused on the role of gut microbiota in AD through inflammatory pathways. Firstly, this review summarized the relationship and interaction among gut microbiota, inflammation, and AD. Secondly, the direct and indirect regulatory effects of gut microbiota on AD through inflammatory pathways were described. These effects were mainly mediated by the component of the gut microbiota (lipopolysaccharides (LPS) and amyloid peptides), the metabolites of bacteria (short-chain fatty acids, branched amino acids, and neurotransmitters) and functional by-products (bile acids). In addition, potential treatments (fecal flora transplantation, antibiotics, probiotics, prebiotics, and dietary interventions) for AD were also discussed through these mechanisms. Finally, according to the current research status, the key problems to be solved in the future studies were proposed.PMID:33711509 | DOI:10.1016/j.arr.2021.101317
Source: Ageing Research Reviews - Category: Genetics & Stem Cells Authors: Source Type: research

Related Links:

Fight Aging! publishes news and commentary relevant to the goal of ending all age-related disease, to be achieved by bringing the mechanisms of aging under the control of modern medicine. This weekly newsletter is sent to thousands of interested subscribers. To subscribe or unsubscribe from the newsletter, please visit: https://www.fightaging.org/newsletter/ Longevity Industry Consulting Services Reason, the founder of Fight Aging! and Repair Biotechnologies, offers strategic consulting services to investors, entrepreneurs, and others interested in the longevity industry and its complexities. To find out m...
Source: Fight Aging! - Category: Research Authors: Tags: Newsletters Source Type: blogs
In conclusion, it remains unclear if brain-specific regional and temporal changes occur in the expression of the different APP variants during AD progression. Since APP is also found in blood cells, assessing the changes in APP mRNA expression in peripheral blood cells from AD patients has been considering an alternative. However, again the quantification of APP mRNA in peripheral blood cells has generated controversial results. Brain APP protein has been analyzed in only a few studies, probably as it is difficult to interpret the complex pattern of APP variants and fragments. We previously characterized the soluabl...
Source: Fight Aging! - Category: Research Authors: Tags: Newsletters Source Type: blogs
Fight Aging! publishes news and commentary relevant to the goal of ending all age-related disease, to be achieved by bringing the mechanisms of aging under the control of modern medicine. This weekly newsletter is sent to thousands of interested subscribers. To subscribe or unsubscribe from the newsletter, please visit: https://www.fightaging.org/newsletter/ Longevity Industry Consulting Services Reason, the founder of Fight Aging! and Repair Biotechnologies, offers strategic consulting services to investors, entrepreneurs, and others interested in the longevity industry and its complexities. To find out m...
Source: Fight Aging! - Category: Research Authors: Tags: Newsletters Source Type: blogs
In conclusion, using a large cohort with rich health and DNA methylation data, we provide the first comparison of six major epigenetic measures of biological ageing with respect to their associations with leading causes of mortality and disease burden. DNAm GrimAge outperformed the other measures in its associations with disease data and associated clinical traits. This may suggest that predicting mortality, rather than age or homeostatic characteristics, may be more informative for common disease prediction. Thus, proteomic-based methods (as utilised by DNAm GrimAge) using large, physiologically diverse protein sets for p...
Source: Fight Aging! - Category: Research Authors: Tags: Newsletters Source Type: blogs
Fight Aging! publishes news and commentary relevant to the goal of ending all age-related disease, to be achieved by bringing the mechanisms of aging under the control of modern medicine. This weekly newsletter is sent to thousands of interested subscribers. To subscribe or unsubscribe from the newsletter, please visit: https://www.fightaging.org/newsletter/ Longevity Industry Consulting Services Reason, the founder of Fight Aging! and Repair Biotechnologies, offers strategic consulting services to investors, entrepreneurs, and others interested in the longevity industry and its complexities. To find out m...
Source: Fight Aging! - Category: Research Authors: Tags: Newsletters Source Type: blogs
Today's open access research is a demonstration in mice of approaches to replace near all microglia in the central nervous system. Microglia are innate immune cells of the brain, involved not just in destroying pathogens and errant cells, but also in ensuring the correct function of neural connections. With the progression of aging, their behavior shifts to become more harmful and inflammatory, and their numbers include ever more senescent cells. Senescent cells generate tissue dysfunction and chronic inflammation via the senescence-associated secretory phenotype, but beyond that microglia tend to adopt a more aggressive a...
Source: Fight Aging! - Category: Research Authors: Tags: Medicine, Biotech, Research Source Type: blogs
This study aimed to characterize the role of BDNF in age-related microglial activation. Initially, we found that degrees of microglial activation were especially evident in the substantia nigra (SN) across different brain regions of aged mice. The levels of BDNF and TrkB in microglia decreased with age and negatively correlated with their activation statuses in mice during aging. Interestingly, aging-related microglial activation could be reversed by chronic, subcutaneous perfusion of BDNF. Peripheral lipopolysaccharide (LPS) injection-induced microglial activation could be reduced by local supplement of BDNF, while shTrkB...
Source: Fight Aging! - Category: Research Authors: Tags: Newsletters Source Type: blogs
Today's open access paper outlines an investigation into how the aging of hematopoietic stem cell populations in bone marrow, responsible for producing blood and immune cells, can contribute to age-related dysfunction in the brain. The authors find that detrimental effects are mediated by circulating levels of CyPA, a signaling factor that is a part of the senescence-associated secretory phenotype (SASP), an inflammatory mix of signal molecules produced by senescent cells. The focus here is on direct inhibition of CyPA as an approach to therapy, but senolytic treatments to clear senescent cells may be the more useful appro...
Source: Fight Aging! - Category: Research Authors: Tags: Medicine, Biotech, Research Source Type: blogs
GUT DYSBIOSIS AND AGE-RELATED NEUROLOGICAL DISEASES; AN INNOVATIVE APPROACH FOR THERAPEUTIC INTERVENTIONS. Transl Res. 2020 Aug 02;: Authors: Holmes A, Finger C, Morales-Scheihing D, Lee J, McCullough LD Abstract The gut microbiota is a complex ecosystem of bacteria, fungi, and viruses that acts as a critical regulator in microbial, metabolic, and immune responses in the host organism. Imbalances in the gut microbiota, termed "dysbiosis", often induce aberrant immune responses, which in turn disrupt the local and systemic homeostasis of the host. Emerging evidence has highlighted the importa...
Source: Translational Research : the journal of laboratory and clinical medicine - Category: Laboratory Medicine Authors: Tags: Transl Res Source Type: research
This study was the first to demonstrate a causal relationship between glial senescence and neurodegeneration. In this study, accumulations of senescent astrocytes and microglia were found in tau-associated neurodegenerative disease model mice. Elimination of these senescent cells via a genetic approach can reduce tau deposition and prevent the degeneration of cortical and hippocampal neurons. Most recently, it was shown that clearance of senescent oligodendrocyte progenitor cells in AD model mice with senolytic agents could lessen the Aβ plaque load, reduce neuroinflammation, and ameliorate cognitive deficits. ...
Source: Fight Aging! - Category: Research Authors: Tags: Newsletters Source Type: blogs
More News: Alzheimer's | Bile | Brain | Diets | Genetics | Neurology | Nutrition | Pathology | Probiotics | Study | Transplants