Heating of Hip Arthroplasty Implants During Metal Artifact Reduction MRI at 1.5- and 3.0-T Field Strengths

Objectives The aim of this study was to quantify the spatial temperature rises that occur during 1.5- and 3.0-T magnetic resonance imaging (MRI) of different types of hip arthroplasty implants using different metal artifact reduction techniques. Materials and Methods Using a prospective in vitro study design, we evaluated the spatial temperature rises of 4 different total hip arthroplasty constructs using clinical metal artifact reduction techniques including high-bandwidth turbo spin echo (HBW-TSE), slice encoding for metal artifact correction (SEMAC), and compressed sensing SEMAC at 1.5 and 3.0 T. Each MRI protocol included 6 pulse sequences, with imaging planes, parameters, and coverage identical to those in patients. Implants were immersed in standard American Society for Testing and Materials phantoms, and fiber optic sensors were used for temperature measurement. Effects of field strength, radiofrequency pulse polarization at 3.0 T, pulse protocol, and gradient coil switching on heating were assessed using nonparametric Friedman and Wilcoxon signed-rank tests. Results Across all implant constructs and MRI protocols, the maximum heating at any single point reached 13.1°C at 1.5 T and 1.9°C at 3.0 T. The temperature rises at 3.0 T were similar to that of background in the absence of implants (P = 1). Higher temperature rises occurred at 1.5 T compared with 3.0 T (P
Source: Investigative Radiology - Category: Radiology Tags: Original Articles Source Type: research
More News: MRI Scan | Radiology | Study