Biogas-based production of glycogen by Nostoc muscorum: Assessing the potential of transforming CO < sub > 2 < /sub > into value added products

Chemosphere. 2021 Feb 5;275:129885. doi: 10.1016/j.chemosphere.2021.129885. Online ahead of print.ABSTRACTThe potential of the filamentous N2-fixing cyanobacterium Nostoc muscorum for CO2 capture from high-loaded streams (i.e. flue gas or biogas) combined with the accumulation of glycogen (GL) and polyhydroxybutyrate (PHB), was evaluated under nutrient-sufficient and nutrient-limited conditions. N. muscorum was able to grow under CO2 contents from 0.03 up to 30% v/v, thus tolerating CO2 concentrations similar to those found in raw biogas or flue-gas, with maximum CO2-fixation rates of 191.9 ± 46 g m-3 d-1 at a biomass concentration of 733.3 ± 207.4 mg TSS L-1. Despite N. muscorum was inhibited by the presence of H2S, the co-inoculation with activated sludge resulted in both CO2 and H2S depletion. Moreover, N. muscorum accumulated GL up to ∼54% dcw under N and P-deprivation, almost 36 times higher than that recorded under nutrients sufficient condition. The addition of 10% extra carbon in the form of valeric acid not only did not hamper the growth of N. muscorum (336.0 ± 113.1 mg TSS L-1) but also increased the GL content to ∼58% dcw. On the contrary, a negligible PHB accumulation was found under the tested conditions, likely due to the high CO2 concentration of 30% v/v in the headspace and therefore the high availability of inorganic carbon for the cultures. N. muscorum cultures achieved VFAs degradations up to ∼78% under controlled pH. These results supported N. mus...
Source: Chemosphere - Category: Chemistry Authors: Source Type: research
More News: Chemistry | Nutrition