A Staging Auxiliary Diagnosis Model for Nonsmall Cell Lung Cancer Based on the Intelligent Medical System

This article is based on the data of 8,920 nonsmall cell lung cancer patients collected by different medical systems in three hospitals in China. Based on the intelligent medical system, on the basis of the intelligent medical system, this paper constructs a nonsmall cell lung cancer staging auxiliary diagnosis model based on convolutional neural network (CNNSAD). CNNSAD converts patient medical records into word sequences, uses convolutional neural networks to extract semantic features from patient medical records, and combines dynamic sampling and transfer learning technology to construct a balanced data set. The experimental results show that the model is superior to other methods in terms of accuracy, recall, and precision. When the number of samples reaches 3000, the accuracy of the system will reach over 80%, which can effectively realize the auxiliary diagnosis of nonsmall cell lung cancer and combine dynamic sampling and migration learning techniques to train nonsmall cell lung cancer staging auxiliary diagnosis models, which can effectively achieve the auxiliary diagnosis of nonsmall cell lung cancer. The simulation results show that the model is better than the other methods in the experiment in terms of accuracy, recall, and precision.PMID:33628327 | PMC:PMC7886591 | DOI:10.1155/2021/6654946
Source: Computational and Mathematical Methods in Medicine - Category: Statistics Authors: Source Type: research