GSE167495 TPX2 Amplification-Driven Aberrant Mitosis in Long-Term Cultured Human Embryonic Stem Cells

Contributor : Hyuk-Jin ChaSeries Type : Expression profiling by high throughput sequencingOrganism : Homo sapiensAlthough human embryonic stem cells (hESCs) are equipped with highly effective machinery for the maintenance of genome integrity, the frequency of genetic aberrations during long-term in vitro hESC culture has been a serious issue that raises concerns over their safety in future clinical applications.By passaging hESCs over a broad range of timepoints, we found that mitotic aberrations, such as the delay of mitosis, multipolar centrosomes, and chromosome mis-segregation, were increased in the late-passaged hESCs (LP-hESCs) in parallel with polyploidy compared to early-passaged hESCs (EP-hESCs).Through high-resolution genome-wide approaches and by following transcriptome analysis, we found that LP-hESCs with a minimal amplicon in chromosome 20q11.21 highly expressed TPX2 (targeting protein for Xklp2), a key protein for governing spindle assembly and cancer malignancy.Consistent with these findings, the inducible expression of TPX2 in EP-hESCs reproduced aberrant mitotic events, such as the delay of mitotic progression, spindle stability, misaligned chromosomes, and polyploidy. This data suggests that the amplification and increased transcription of the TPX2 gene at 20q11.21 could contribute to an increase in aberrant mitosis due to altered spindle dynamics.
Source: GEO: Gene Expression Omnibus - Category: Genetics & Stem Cells Tags: Expression profiling by high throughput sequencing Homo sapiens Source Type: research