Estimation of ambient PM < sub > 2.5 < /sub > in Iraq and Kuwait from 2001 to 2018 using machine learning and remote sensing

Environ Int. 2021 Feb 19;151:106445. doi: 10.1016/j.envint.2021.106445. Online ahead of print.ABSTRACTIraq and Kuwait are in a region of the world known to be impacted by high levels of fine particulate matter (PM2.5) attributable to sources that include desert dust and ambient pollution, but historically have had limited pollution monitoring networks. The inability to assess PM2.5 concentrations have limited the assessment of the health impact of these exposures, both in the native populations and previously deployed military personnel. As part of a Department of Veterans Affairs Cooperative Studies Program health study of land-based U.S. military personnel who were previously deployed to these countries, we developed a novel approach to estimate spatially and temporarily resolved daily PM2.5 exposures 2001-2018. Since visibility is proportional to ground-level particulate matter concentrations, we were able to take advantage of extensive airport visibility data that became available as a result of regional military operations over this time period. First, we combined a random forest machine learning and a generalized additive mixed model to estimate daily high resolution (1 km × 1 km) visibility over the region using satellite-based aerosol optical depth (AOD) and airport visibility data. The spatially and temporarily resolved visibility data were then used to estimate PM2.5 concentrations from 2001 to 2018 by converting visibility to PM2.5 using empirical relationships de...
Source: Environment International - Category: Environmental Health Authors: Source Type: research