Increased kynurenine concentration attenuates serotonergic neurotoxicity induced by 3,4-methylenedioxymethamphetamine (MDMA) in rats through activation of aryl hydrocarbon receptor

This study aims to determine the effect of MDMA on the KYN pathway and on AhR activity and to establish their role in the long-term serotonergic neurotoxicity induced by the drug in rats. Our results show that MDMA induces the activation of the KYN pathway, mediated by hepatic tryptophan 2,3-dioxygenase (TDO). MDMA also activated AhR as evidenced by increased AhR nuclear translocation and CYP1B1 mRNA expression. Autoradiographic quantification of serotonin transporters showed that both the TDO inhibitor 680C91 and the AhR antagonist CH-223191 potentiated the neurotoxicity induced by MDMA, while administration of exogenous L-kynurenine or of the AhR positive modulator 3,3'-diindolylmethane (DIM) partially prevented the serotonergic damage induced by the drug. The results demonstrate for the first time that MDMA increases KYN levels and AhR activity, and these changes appear to play a role in limiting the neurotoxicity induced by the drug. This work provides a better understanding of the physiological mechanisms that attenuate the brain damage induced by MDMA and identify modulation of the KYN pathway and of AhR as potential therapeutic strategies to limit the negative effects of MDMA.PMID:33607146 | DOI:10.1016/j.neuropharm.2021.108490
Source: Neuropharmacology - Category: Drugs & Pharmacology Authors: Source Type: research