Effect of load-induced local mechanical strain on peri-implant bone cell activity related to bone resorption and formation in mice: An analysis of histology and strain distributions.

Effect of load-induced local mechanical strain on peri-implant bone cell activity related to bone resorption and formation in mice: An analysis of histology and strain distributions. J Mech Behav Biomed Mater. 2021 Jan 30;116:104370 Authors: Okawara H, Arai Y, Matsuno H, Marcián P, Borák L, Aoki K, Wakabayashi N Abstract The purpose of this study was to investigate the effect of load-induced local mechanical strain on bone cell activity of peri-implant bone in mice. Titanium implants were placed in the maxillae of 13-week-old male C57BL/6J mice and subjected to intermittent 0.15 N, 0.3 N, or 0.6 N loads for 30 min/day for 6 days. The animals were sacrificed 2 days after the final loading. Unloaded mice were used as controls. An animal-specific three-dimensional finite element model was constructed based on morphological data retrieved from in vivo microfocus computed tomography for each mouse to calculate the mechanical strain distribution. Strain distribution images were overlaid on corresponding histological images of the same site in the same animal. The buccal cervical region of the peri-implant bone was predetermined as the region of interest (ROI). Each ROI was divided by four strain intensity levels: 0-20 με, 20-60 με, 60-100 με, and ≥100 με, and the bone histomorphometric parameters were analyzed by the total area of each strain range for all loaded samples. The distance between the calcified front and calcein...
Source: Journal of the Mechanical Behavior of Biomedical Materials - Category: Materials Science Authors: Tags: J Mech Behav Biomed Mater Source Type: research