Aerosolized SARS-CoV-2 exposure assessment: dispersion modeling with AERMOD

AbstractCOVID-19 is now a pandemic and the knowledge gap on SARS-CoV-2, i.e., the COVID-19 disease agent, dispersion persists. The US Centers for Disease Control and Prevention suggests fomites may not be the main route through which the novel coronavirus spreads. Supporting the same view, the latest the World Health Organization report recommends wearing masks for every individual in public, highlighting the transmission through the air. In the current study AERMOD, one of the most validated and tested models suggested by the USEPA, is used to model SARS-CoV-2-laden PM10 in a hypothetical outdoor environment. Multiple scenarios including particle size, wind speed, source height variations as well as and combined scenarios were modeled to estimated how exposure risk changes with the above-mentioned variables. The results reveal that wind speed majorly narrows infectious plume rather than transferring the peak concentration. The particle size variation indicated that small particles, i.e.,0.01  − 2.5 μm, could reach more than 9  m away from the source in concentration range of 10  − 20 (μg/m3). On the other hand, source height contributes to peak plume shift rather than dispersing the infected particles. This idea was further studies by using combined scenarios which indicated height difference can impact peak plume displacement rather than wind speed. In the worst-case scenario, the results indicate that the virus-laden particles can travel outdoors more than...
Source: Journal of Environmental Health Science and Engineering - Category: Environmental Health Source Type: research