Multifunctional nanoparticle PEG ‑Ce6‑Gd for MRI‑guided photodynamic therapy.

Multifunctional nanoparticle PEG‑Ce6‑Gd for MRI‑guided photodynamic therapy. Oncol Rep. 2020 Nov 27;: Authors: Xu D, Baidya A, Deng K, Li YS, Wu B, Xu HB Abstract Gliomas are one of the most common types of primary brain tumors. Despite recent advances in the combination of surgery, radiotherapy, systemic therapy (chemotherapy, targeted therapy) and supportive therapy in the multimodal treatment of gliomas, the overall prognosis remains poor and the long‑term survival rate is low. Thus, it is crucial to develop a novel glioma management method. Due to its relatively non‑invasive, selective and repeatable characteristics, photodynamic therapy (PDT) has been investigated for glioma therapy in the past decade, exhibiting higher selectivity and lower side effects compared with those of conventional therapy. However, most of the photosensitizers (PSs) are highly hydrophobic, leading to poor water solubility, rapid degradation with clearance in blood circulation and ultimately, low bioavailability. In the present study, hydrophilic polyethylene glycol (PEG)‑chlorin e6 (Ce6) chelated gadolinium ion (Gd3+) nanoparticles (PEG‑Ce6‑Gd NPs) were synthesized via a chelation and self‑assembly process. Initially, the cell cytotoxicity of PEG‑Ce6‑Gd NPs was evaluated with or without laser irradiation. The in vitro study demonstrated the lack of toxicity of PEG‑Ce6‑Gd NPs to tumor cells in the absence of laser irradiation....
Source: Oncology Reports - Category: Cancer & Oncology Tags: Oncol Rep Source Type: research