Protein Hormone Fragmentation in Intercellular Signaling: Hormones as Nested Information Systems †.

This study explores the hypothesis that protein hormones are nested information systems in which initial products of gene transcription, and their subsequent protein fragments, before and after secretion and initial target cell action, play additional physiological regulatory roles. The study produced four tools and key results: 1) a problem approach that proceeds, with examples and suggestions for in vivo organismal functional tests for peptide-protein interactions, from proteolytic breakdown prediction to models of hormone fragment modulation of protein-protein binding motifs in unrelated proteins; 2) a catalog of 461 known soluble human protein hormones and their predicted fragmentation patterns; 3) an analysis of the predicted proteolytic patterns of the canonical protein hormone transcripts demonstrating near-universal persistence of 9 ± 7 peptides of 8 ± 8 amino acids even after cleavage with 24 proteases from four protease classes; and, 4) a coincidence analysis of the predicted proteolysis locations and the 1939 exon junctions within the transcripts that shows an excess (P < 0.001) of predicted proteolysis within 10 residues, especially at the exonal junction (P < 0.01). It appears all protein hormone transcripts generate multiple fragments the size of peptide hormones or protein-protein binding domains that may alter intracellular or extracellular functions by acting as modulators of metabolic enzymes, transduction factors, protein binding proteins, o...
Source: Biology of Reproduction - Category: Reproduction Medicine Authors: Tags: Biol Reprod Source Type: research