Microglial Activation Modulates Neuroendocrine Secretion During Experimental Sepsis

In this study, we aimed to investigate the role of microglial activation in the neuroendocrine system functions during systemic inflammation. Wistar rats received an intracerebroventricular injection of the microglial activation inhibitor minocycline (100  μg/animal), shortly before sepsis induction by cecal ligation and puncture. At 6 and 24 h after surgery, hormonal parameters, central and peripheral inflammation, and markers of apoptosis and synaptic function in the hypothalamus were analyzed. The administration of minocycline decreased the pro duction of inflammatory mediators and the expression of cell death markers, especially in the late phase of sepsis (24 h). With respect to the endocrine parameters, microglial inhibition caused a decrease in oxytocin and an increase in corticosterone and vasopressin plasma levels in the early phase of sepsis (6 h), while in the late phase, we observed decreased oxytocin and increased ACTH and corticosterone levels compared to septic animals that did not receive minocycline. Prolactin levels were not affected by minocycline administration. The results indicate that microglial activation diffe rentially modulates the secretion of several hormones and that this process is associated with inflammatory mediators produced both centrally and peripherally.
Source: Molecular Neurobiology - Category: Neurology Source Type: research