Functional Alterations of Multidrug Resistance-Associated Proteins 2 and 5, and Breast Cancer Resistance Protein upon Snail-Induced Epithelial-Mesenchymal Transition in HCC827 Cells.

Functional Alterations of Multidrug Resistance-Associated Proteins 2 and 5, and Breast Cancer Resistance Protein upon Snail-Induced Epithelial-Mesenchymal Transition in HCC827 Cells. Biol Pharm Bull. 2021;44(1):103-111 Authors: Yano K, Todokoro I, Kamioka H, Tomono T, Ogihara T Abstract Our previous report indicated that Snail-induced epithelial-mesenchymal transition (EMT) enhanced P-glycoprotein (P-gp) function and drug resistance to P-gp substrate anticancer drug in a human non-small cell lung cancer (NSCLC) cell line, HCC827. Our objective is to evaluate the changes in the mRNA and protein expression levels and the functions of multidrug resistance-associated protein (MRP) 2, MRP5 and breast cancer resistance protein (BCRP). Snail-expressing HCC827 cells showed increased mRNA levels of Snail and a mesenchymal marker vimentin, and decreased mRNA levels of an epithelial marker E-cadherin after transduction, indicating that Snail had induced EMT consistent with our previous reports. The mRNA level of MRP2 was significantly decreased, while that of MRP5 remained unchanged, in Snail-expressing cells. The expression levels of MRP2 and MRP5 proteins in whole-cell homogenate were unchanged in Snail-expressing cells, but MRP5 protein showed significantly increased membrane localization. Snail-transduction increased the efflux transport of 5-(and-6)-carboxy-2',7'-dichlorofluorescein (CDCF), a substrate of MRP2, 3 and 5. This increase was b...
Source: Biological and Pharmaceutical Bulletin - Category: Drugs & Pharmacology Authors: Tags: Biol Pharm Bull Source Type: research