Serum Exosomal microRNA-27-3p Aggravates Cerebral Injury and Inflammation in Patients with Acute Cerebral Infarction by Targeting PPAR γ

This study investigated the mechanism of serum exosomes in ACI. Serum exosomes isolated from ACI patients and normal people were identified and then injected into the established middle cerebral artery occlusion (MCAO) rat model to evaluate cerebral injury and inflammation. Exosomal microRNA (miR)-27-3p expression was detected and interfered to analyze rat cerebral inflammation. The binding relationship between miR-27-3p and PPAR γ was predicted and verified. The lipopolysaccharide (LPS)-treated microglia model was established and intervened with miR-27-3p to detect PPARγ, Iba-1, and inflammation-related factor expressions. After overexpressing PPARγ, rat cerebral inflammation was evaluated. The clinical significance of s erum exosomal miR-27-3p in ACI was evaluated. Serum exosomes from ACI patients caused exacerbated MCAO rat cerebral injury and poor behavior recovery, as well as promoted cerebral inflammation. Serum exosomal miR-27-3p deepened rat brain inflammation. miR-27-3p targeted PPARγ to promote microglia a ctivation and inflammation-related factor expressions in MCAO rats, and overexpressing PPARγ attenuated MCAO rat cerebral inflammation. Serum exosomal miR-27-3p promised to be a biomarker for ACI. We proved that serum exosomes from ACI patients aggravated ACI patient cerebral inflammationvia the miR-27-3p/PPAR γ axis.
Source: Inflammation - Category: Allergy & Immunology Source Type: research