Kynurenic Acid Protects Against Reactive Glial-associated Reductions in the Complexity of Primary Cortical Neurons

AbstractBrain glia produce neuroactive metabolites via tryptophan-kynurenine catabolism. A role for kynurenine pathway (KP) metabolites is proposed in reactive glial associated neurodegeneration. The aim of this investigation was to assess the role of KP induction and KP metabolites in driving reactive glial associated neuronal atrophy. Rat primary mixed glia, and enriched microglial and astroglial cultures were stimulated with IFN γ (10 ng/ml) for 24 hours. KP induction in mixed glial cells was confirmed by raised expression of the rate limiting KP enzyme indoleamine 2,3 dioxygenase (IDO) and raised concentrations of KP metabolites kynurenic acid (KYNA) and quinolinic acid (QUIN) in the conditioned media. Conditioned media was transferred onto immature (3 days) and mature (21 days) primary cortical neuronsin vitro for 24 hours. IFN γ-stimulated mixed glial conditioned media reduced neurite outgrowth and complexity of both immature and mature neurons and co-localised expression of synaptic markers determined by immunocytochemistry. Pre-treatment of mixed glial cells with the IDO inhibitor, 1-methyltryptophan (1-MT) (L) prevent ed these effects of IFNγ-stimulated mixed glial conditioned media. KYNA increased complexity and synapse formation in mature cortical neurons and protected against reduced neuronal complexity and co-localised expression of synaptic markers induced by conditioned media from IFNγ-stimulated mixed gl ia and by treatment of neuronal cells with QUIN (1Â...
Source: Journal of NeuroImmune Pharmacology - Category: Drugs & Pharmacology Source Type: research