Uncertainty Aware Temporal-Ensembling Model for Semi-Supervised ABUS Mass Segmentation

Accurate breast mass segmentation of automated breast ultrasound (ABUS) images plays a crucial role in 3D breast reconstruction which can assist radiologists in surgery planning. Although the convolutional neural network has great potential for breast mass segmentation due to the remarkable progress of deep learning, the lack of annotated data limits the performance of deep CNNs. In this article, we present an uncertainty aware temporal ensembling (UATE) model for semi-supervised ABUS mass segmentation. Specifically, a temporal ensembling segmentation (TEs) model is designed to segment breast mass using a few labeled images and a large number of unlabeled images. Considering the network output contains correct predictions and unreliable predictions, equally treating each prediction in pseudo label update and loss calculation may degrade the network performance. To alleviate this problem, the uncertainty map is estimated for each image. Then an adaptive ensembling momentum map and an uncertainty aware unsupervised loss are designed and integrated with TEs model. The effectiveness of the proposed UATE model is mainly verified on an ABUS dataset of 107 patients with 170 volumes, including 13382 2D labeled slices. The Jaccard index (JI), Dice similarity coefficient (DSC), pixel-wise accuracy (AC) and Hausdorff distance (HD) of the proposed method on testing set are 63.65%, 74.25%, 99.21% and 3.81mm respectively. Experimental results demonstrate that our semi-...
Source: IEE Transactions on Medical Imaging - Category: Biomedical Engineering Source Type: research