Interactions between nascent proteins translated by adjacent ribosomes drive homomer assembly

In this study, we investigated whether direct interaction of two nascent proteins, emerging from nearby ribosomes (co-co assembly), constitutes a general mechanism for oligomer formation. We used proteome-wide screening to detect nascent chain–connected ribosome pairs and identified hundreds of homomer subunits that co-co assemble in human cells. Interactions are mediated by five major domain classes, among which N-terminal coiled coils are the most prevalent. We were able to reconstitute co-co assembly of nuclear lamin in Escherichia coli, demonstrating that dimer formation is independent of dedicated assembly machineries. Co-co assembly may thus represent an efficient way to limit protein aggregation risks posed by diffusion-driven assembly routes and ensure isoform-specific homomer formation.
Source: ScienceNOW - Category: Science Authors: Tags: Cell Biology, Molecular Biology r-articles Source Type: news