Incorporating antagonistic pleiotropy into models for molecular replicators.

Incorporating antagonistic pleiotropy into models for molecular replicators. Biosystems. 2020 Dec 24;:104333 Authors: Qu T, Calabrese P, Singhavi P, Tower J Abstract In modern cells, chromosomal genes composed of DNA encode multi-subunit protein/RNA complexes that catalyze the replication of the chromosome and cell. One prevailing theory for the origin of life posits an early stage involving self-replicating macromolecules called replicators, which can be considered genes capable of self-replication. One prevailing theory for the genetics of aging in humans and other organisms is antagonistic pleiotropy, which posits that a gene can be beneficial in one context, and detrimental in another context. We previously reported that the conceptual simplicity of molecular replicators facilitates the generation of two simple models involving antagonistic pleiotropy. Here a third model is proposed, and each of the three models is presented with improved definition of the time variable. Computer simulations were used to calculate the proliferation of a hypothetical two-subunit replicator (AB), when one of the two subunits (B) exhibits antagonistic pleiotropy, leading to an advantage for B to be unstable. In model 1, instability of B yields free A subunits, which in turn stimulate the activity of other AB replicators. In model 2, B is lost and sometimes replaced by a more active mutant form, B'. In model 3, B becomes damaged and loses activity, a...
Source: Biosystems - Category: Biotechnology Authors: Tags: Biosystems Source Type: research