The Quality of Epigenetic Clocks Continues to Improve

There is at present a diverse exploration of clocks that assess biological age, these clocks constructed as weighted combinations of data picked from the epigenome, transcriptome, or proteome, all of which change in characteristic ways with age. Many different clocks are at various stages of development and refinement. The goal is the production of a robust, low-cost, rapid way to assess the efficacy of potential rejuvenation therapies: if one can use a blood test ten days before and ten days after a treatment, that would be a great deal easier than having to wait and see over the course of a life span. Unfortunately, this goal remains a future phase of development for this class of technology. Given that there is no good understanding of exactly which processes of molecular damage cause specific changes in the epigenome, transcriptome, and proteome, every algorithm must be calibrated against a potential treatment before it can be used to assess that treatment. Which somewhat defeats the point, as the only way to calibrate it is to run the slow, expensive life span studies that we'd all like to avoid. Still, the research community is presently energetically engaged in improving on present approaches to the production of clock algorithms, as illustrated by the example here. Researchers have produced DeepMAge, a novel aging clock that was trained to predict human age on more than 6000 DNA methylation profiles. By analyzing the methylation patterns it can estima...
Source: Fight Aging! - Category: Research Authors: Tags: Daily News Source Type: blogs