Deep Convolutional Encoder-Decoder algorithm for MRI brain reconstruction

AbstractCompressed Sensing Magnetic Resonance Imaging (CS-MRI) could be considered a challenged task since it could be designed as an efficient technique for fast MRI acquisition which could be highly beneficial for several clinical routines. In fact, it could grant better scan quality by reducing motion artifacts amount as well as the contrast washout effect. It offers also the possibility to reduce the exploration cost and the patient ’s anxiety. Recently, Deep Learning Neuronal Network (DL) has been suggested in order to reconstruct MRI scans with conserving the structural details and improving parallel imaging-based fast MRI. In this paper, we propose Deep Convolutional Encoder-Decoder architecture for CS-MRI reconstruction. Such architecture bridges the gap between the non-learning techniques, using data from only one image, and approaches using large training data. The proposed approach is based on autoencoder architecture divided into two parts: an encoder and a decoder. The encoder as well as the decoder has essenti ally three convolutional blocks. The proposed architecture has been evaluated through two databases: Hammersmith dataset (for the normal scans) and MICCAI 2018 (for pathological MRI). Moreover, we extend our model to cope with noisy pathological MRI scans. The normalized mean square error (NMSE), th e peak-to-noise ratio (PSNR), and the structural similarity index (SSIM) have been adopted as evaluation metrics in order to evaluate the proposed architectu...
Source: Medical and Biological Engineering and Computing - Category: Biomedical Engineering Source Type: research