Sensors, Vol. 20, Pages 6635: High Magnetic Field Sensitivity in Ferromagnetic –Ferroelectric Composite with High Mechanical Quality Factor

In this study, composite devices were fabricated using ferromagnetic FeSiB-based alloys (Metglas) and ferroelectric ceramics, and their magnetic field sensitivity was evaluated. Sintered 0.95Pb(Zr0.52Ti0.48)O3-0.05Pb(Mn1/3Sb2/3)O3 (PZT-PMS) ceramic exhibited a very dense microstructure with a large piezoelectric voltage coefficient (g31 = −16.8 × 10−3 VmN−1) and mechanical quality factor (Qm > 1600). Owing to these excellent electromechanical properties of the PZT-PMS, the laminate composite with a Metglas/PZT-PMS/Metglas sandwich structure exhibited large magnetoelectric voltage coefficients (αME) in both off-resonance and resonance modes. When the length-to-width aspect ratio (l/w) of the composite was controlled, αME slightly varied in the off-resonance mode, resulting in similar sensitivity values ranging from 129.9 to 146.81 VT−1. Whereas in the resonance mode, the composite with small l/w exhibited a large reduction of αME and sensitivity values. When controlling the thickness of the PZT-PMS (t), the αME of the composite showed the largest value when t was the smallest in the off-resonance mode, while αME was the largest when t is the largest in the resonance mode. The control of t slightly affected the sensitivity in the off-resonance mode, however, higher sensitivity was obtained as t increased in the resonance mode. Th...
Source: Sensors - Category: Biotechnology Authors: Tags: Letter Source Type: research
More News: Biotechnology | Study