Skilled movement and posture deficits in rat string-pulling behavior following low dose space radiation (28Si) exposure.

Skilled movement and posture deficits in rat string-pulling behavior following low dose space radiation (28Si) exposure. Behav Brain Res. 2020 Nov 09;:113010 Authors: Blackwell AA, Schell BD, Osterlund Oltmanns JR, Whishaw IQ, Ton ST, Adamczyk NS, Kartje GL, Britten RA, Wallace DG Abstract Deep space flight missions beyond the Van Allen belt have the potential to expose astronauts to space radiation which may damage the central nervous system and impair function. The proposed mission to Mars will be the longest mission-to-date and identifying mission critical tasks that are sensitive to space radiation is important for developing and evaluating the efficacy of counter measures. Fine motor control has been assessed in humans, rats, and many other species using string-pulling behavior. For example, focal cortical damage has been previously shown to disrupt the topographic (i.e., path circuity) and kinematic (i.e., moment-to-moment speed) organization of rat string-pulling behavior count to compromise task accuracy. In the current study, rats were exposed to a ground-based model of simulated space radiation (5 cGy 28Silicon), and string-pulling behavior was used to assess fine motor control. Irradiated rats initially took longer to pull an unweighted string into a cage, exhibited impaired accuracy in grasping the string, and displayed postural deficits. Once rats were switched to a weighted string, some deficits lessened but postural in...
Source: Behavioural Brain Research - Category: Neurology Authors: Tags: Behav Brain Res Source Type: research
More News: Brain | Neurology | Study