Examination of the effect of combined use of Er:YAG laser irradiation and mechanical force loading on bone metabolism using primary human gingival fibroblasts

AbstractProlonged treatment and painful tooth movement are major problems for patients undergoing orthodontic treatment. Accelerating the movement of teeth leads to shortening of the treatment period, so various studies on the movement of teeth have been conducted in the field of orthodontics. In previous studies, we performed a fiber incision-like fiberotomy using an Er:YAG laser in rats and confirmed acceleration of tooth movement. Therefore, in this study, the effect of Er:YAG laser irradiation on human gingival fibroblasts was investigated in vitro. Human gingival fibroblasts (2.0  × 105 cells) were seeded in a 6-well plate and reached 80% confluence 24  h later. A control group not undergoing any irradiation and 3 groups undergoing laser irradiation at 0.6 W, 1.0 W, and 1.2 W were investigated. Laser irradiation was performed 24 h after cell seeding. The cells were then recovered 24 h later, and the cyclooxygenase-2 (COX-2), interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), bone morphogenetic protein-2 (BMP-2), and BMP-4 genes were confirmed by PCR. In addition, a control group not undergoing any procedures, a group undergoing only Er:YAG laser irradiation, a group undergoing only centrifugal loading, and a group undergoing both Er:YAG laser irradiation and centrifugal force loading were investigated. After 24 h, cells were collected and PCR was performed. Twenty-four hours after laser irradiation, gene expressions were examined by quantitative RT-...
Source: Lasers in Medical Science - Category: Laser Surgery Source Type: research