Fish oil attenuated dystrophic muscle markers of inflammation via free fatty acid receptors 1 (FFA1) and 4 (FFA4) in the mdx mouse model of DMD.

Fish oil attenuated dystrophic muscle markers of inflammation via free fatty acid receptors 1 (FFA1) and 4 (FFA4) in the mdx mouse model of DMD. Anat Rec (Hoboken). 2020 Nov 02;: Authors: Maciel Junior M, de Carvalho SC, Saenz Suarez PA, Santo Neto H, Marques MJ Abstract In the present study we investigated the involvement of free fatty acid (FFA) receptors in the anti-inflammatory role of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) in dystrophic muscles, by administering FFA blockers in the mdx mouse model of dystrophy. Mdx mice (3 months-old) were treated with fish oil capsules (FDC Vitamins; 0.4 g EPA and 0.2 g DHA; gavage) alone or concomitant to FFA1 and FFA4 blockers (GW1100 and AH7614; i.p.). C57BL/10 mice (3 months-old) and untreated-mdx mice received mineral oil and were used as controls. After 1 month of treatment, plasma markers of myonecrosis (total and cardiac creatine kinase; CK), the levels of FFA1 and FFA4 and of the markers of inflammation, nuclear transcription factor kappa B (NFkB), tumor necrosis factor alpha (TNF-α) and interleukin 1β (IL-1β) were analyzed in the diaphragm muscle and heart by western blot. Fish oil significantly reduced total CK, cardiac CK and the levels of NFkB (diaphragm), and of TNF-α and IL-1β (diaphragm and heart) in mdx. In the dystrophic diaphragm, FFA1 was increased compared to normal. Blockers of FFA1 and FFA4 significantly inhibited the effects of fish oil...
Source: Anatomical Record - Category: Anatomy Authors: Tags: Anat Rec (Hoboken) Source Type: research