Proteomic analysis of mitochondrial biogenesis in cardiomyocytes differentiated from human induced pluripotent stem cells.

Proteomic analysis of mitochondrial biogenesis in cardiomyocytes differentiated from human induced pluripotent stem cells. Am J Physiol Regul Integr Comp Physiol. 2020 Oct 28;: Authors: Venkatesh S, Baljinnyam E, Tong M, Kashihara T, Yan L, Liu T, Li H, Xie LH, Nakamura M, Oka S, Suzuki C, Fraidenraich D, Sadoshima J Abstract Mitochondria play key roles in the differentiation and maturation of human cardiomyocytes (CMs). As human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) hold potential in the treatment of heart diseases, we sought to identify key mitochondrial pathways and regulators, which may provide targets for improving cardiac differentiation and maturation. Proteomic analysis was performed on enriched mitochondrial protein extracts isolated from hiPSC-CMs differentiated from dermal fibroblasts (dFCM) and cardiac fibroblasts (cFCM) at time points between 12 and 115 days of differentiation, and from adult and neonatal mouse hearts. Mitochondrial proteins with a 2-fold change at time points up to 120 days relative to 12 days were subjected to Ingenuity Pathway Analysis (IPA). The highest upregulation was in metabolic pathways for fatty acid oxidation (FAO), the tricarboxylic acid (TCA) cycle, oxidative phosphorylation (OXPHOS) and branched chain amino acid (BCAA) degradation. The top upstream regulators predicted to be activated were peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC1-...
Source: American Journal of Physiology. Regulatory, Integrative and Comparative Physiology - Category: Physiology Authors: Tags: Am J Physiol Regul Integr Comp Physiol Source Type: research