Characterization and biotransformation in the plasma and red blood cells of V(IV)O(2+) complexes formed by ceftriaxone.

Characterization and biotransformation in the plasma and red blood cells of V(IV)O(2+) complexes formed by ceftriaxone. J Inorg Biochem. 2014 Dec 29; Authors: Sanna D, Fabbri D, Serra M, Buglyó P, Bíró L, Ugone V, Micera G, Garribba E Abstract The coordination mode and geometry in aqueous solution of oxidovanadium(IV) complexes formed by a third-generation cephalosporin, ceftriaxone (H3cef), were studied by spectroscopic (EPR, electron paramagnetic resonance), pH-potentiometric and computational (DFT, density functional theory) methods. The behavior of the model systems containing 6-hydroxy-2-methyl-3-thioxo-3,4-dihydro-1,2,4-triazine-5(2H)-one (H2hmtdt) and 3-benzylthio-6-hydroxy-2-methyl-1,2,4-triazine-5(2H)-one (Hbhmt) was examined for comparison. The stability of the tautomers of ceftriaxone and 6-hydroxy-2-methyl-3-thioxo-3,4-dihydro-1,2,4-triazine-5(2H)-one in the neutral, mono- and bi-anionic form was calculated by DFT methods, both in the gas phase and in aqueous solution, and the electron density on the oxygen atoms of the hydroxytriazinone ring was related to the pKa of the ligands. The data demonstrate that ceftriaxone coordinates V(IV)O(2+) forming mono- and bis-chelated complexes with (Oket, O(-)) donor set and formation of five-membered chelate rings. The geometry of the bis-chelated complex, cis-[VO(Hcef)2(H2O)](2-), is cis-octahedral and this species can deprotonate, around physiological pH, to form the correspondi...
Source: Journal of Inorganic Biochemistry - Category: Biochemistry Authors: Tags: J Inorg Biochem Source Type: research