Cortical parameters predict bone strength at the tibial diaphysis, but are underestimated by HR-pQCT and μCT compared to histomorphometry.

This study evaluated the capability of several high-resolution imaging techniques to capture cortical bone morphology and assessed the correlation with the bone's mechanical properties. The microstructural properties (cortical thickness [Ct.Th], porosity [Ct.Po], area [Ct.Ar]) of 11 female tibial diaphysis (40-90 years) were evaluated by dual-energy X-ray absorptiometry (DXA), high-resolution peripheral-quantitative-computed-tomography (HR-pQCT), micro-CT (μCT) and histomorphometry. Stiffness and maximal torque to failure were determined by mechanical testing. T-Scores determined by DXA ranged from 0.6 to -5.6 and a lower T-Score was associated with a decrease in Ct.Th (p ≤ 0.001) while the Ct.Po (p ≤ 0.007) increased, and this relationship was independent of the imaging method. With decreasing T-Score, histology showed an increase in Ct.Po from the endosteal to the periosteal side (p = 0.001) and an exponential increase in the ratio of osteons at rest to those after remodelling. However, compared to histomorphometry, HR-pQCT and μCT underestimated Ct.Po and Ct.Th. A lower T-Score was also associated with significantly reduced stiffness (p = 0.031) and maximal torque (p = 0.006). Improving the accuracy of Ct.Po and Ct.Th did not improve prediction of the mechanical properties, which was most closely related to geometry (Ct.Ar). The ex-vivo evaluation of mechanical properties correlated with all imaging modalities, with Ct.Th and Ct.Po highly correlated with t...
Source: Journal of Anatomy - Category: Anatomy Authors: Tags: J Anat Source Type: research
More News: Anatomy | CT Scan | DEXA Scan | Study