A practical guide to rapid-prototyping of PDMS-based microfluidic devices: A tutorial.

A practical guide to rapid-prototyping of PDMS-based microfluidic devices: A tutorial. Anal Chim Acta. 2020 Oct 23;1135:150-174 Authors: Morbioli GG, Speller NC, Stockton AM Abstract Micro total analytical systems (μTAS) are attractive to multiple fields that include chemistry, medicine and engineering due to their portability, low power usage, potential for automation, and low sample and reagent consumption, which in turn results in low waste generation. The development of fully-functional μTAS is an iterative process, based on the design, fabrication and testing of multiple prototype microdevices. Typically, microfabrication protocols require a week or more of highly-skilled personnel time in high-maintenance cleanroom facilities, which makes this iterative process cost-prohibitive in many locations worldwide. Rapid-prototyping tools, in conjunction with the use of polydimethylsiloxane (PDMS), enable rapid development of microfluidic structures at lower costs, circumventing these issues in conventional microfabrication techniques. Multiple rapid-prototyping methods to fabricate PDMS-based microfluidic devices have been demonstrated in literature since the advent of soft-lithography in 1998; each method has its unique advantages and drawbacks. Here, we present a tutorial discussing current rapid-prototyping techniques to fabricate PDMS-based microdevices, including soft-lithography, print-and-peel and scaffolding techniques, among...
Source: Analytica Chimica Acta - Category: Chemistry Authors: Tags: Anal Chim Acta Source Type: research
More News: Chemistry