Quantitative perfusion-CMR is significantly influenced by the placement of the arterial input function

AbstractThe aim of this study is to provide a systematic assessment of the influence of the position on the arterial input function (AIF) for perfusion quantification. In 39 patients with a wide range of left ventricular function the AIF was determined using a diluted contrast bolus of a cardiac magnetic resonance imaging in three left ventricular levels (basal, mid, apex) as well as aortic sinus (AoS). Time to peak signal intensities, baseline corrected peak signal intensity and upslopes were determined and compared to those obtained in the AoS. The error induced by sampling the AIF in a position different to the AoS was determined by Fermi deconvolution. The time to peak signal intensity was strongly correlated (r2 >  0.9) for all positions with a systematic earlier arrival in the basal (− 2153 ± 818 ms), the mid (− 1429 ± 928 ms) and the apical slice (− 450 ± 739 ms) relative to the AoS (all p <  0.001). Peak signal intensity as well as upslopes were strongly correlated (r2 >  0.9 for both) for all positions with a systematic overestimation in all positions relative to the AoS (all p <  0.001 and all p <  0.05). Differences between the positions were more pronounced for patients with reduced ejection fraction. The error of averaged MBF quantification was 8%, 13% and 27% for the base, mid and apex. The location of the AIF significantly influences core parameters for perfusion quantification with a systematic and ...
Source: The International Journal of Cardiovascular Imaging - Category: Radiology Source Type: research