Biological assisted organic sulfur removal from low rank indigenous coal using airlift bioreactor.

Biological assisted organic sulfur removal from low rank indigenous coal using airlift bioreactor. Bioprocess Biosyst Eng. 2020 Oct 09;: Authors: Jatoi AS, Aziz S, Soomro SA Abstract Combustion of coal create many harmful gases which effect on human health as well as on environment. The sulfur in coal limits its own use, and bio-desulfurization (BDS) shows enormous development potential and the prospects for the application of coal desulfurization. Present study highlights the bioprocess strategies for reduction of sulfur content from coal before combustion. The bioprocess involved the use of Airlift Bioreactor along with Rhodococcus sp. ATCC55309 as biocatalyst. Different nutritional and operational parameters involved to promote sulfur reduction at maximum level. The parameters were investigated are different carbon source, temperature, pH, Agitation speed, and pulp density. The impact of these parameters shows that sulfur removal can be enhanced though optimized conditions. The amount of total sulfur and organic sulfur present in coal were reduced by 33 ± 1.7% and 71 ± 1.5%, respectively, compared to untreated coal at controlled condition of various parameters are 20% (w/v) pulp density, 30 °C, 170 rpm, glucose as carbon source and pH 7. Whereas organic sulfur degrades from coal using Rhodococcus sp. ATCC55309 about 0.36 mM DBT (Di-benzothiophene) within 8 days via 4S-pathway. The maximum conversion of DBT compound ...
Source: Bioprocess and Biosystems Engineering - Category: Biomedical Engineering Authors: Tags: Bioprocess Biosyst Eng Source Type: research