Sulforaphane modulates CX3CL1/CX3CR1 axis and inflammation in palmitic acid-induced cell injury in C2C12 skeletal muscle cells.

Sulforaphane modulates CX3CL1/CX3CR1 axis and inflammation in palmitic acid-induced cell injury in C2C12 skeletal muscle cells. Mol Biol Rep. 2020 Oct 09;: Authors: Faridvand Y, Haddadi P, Nejabati HR, Ghaffari S, Zamani-Gharehchamani E, Nozari S, Nouri M, Jodati A Abstract Studies have shown that sulforaphane (SFN) has potent anti-inflammatory and free radical scavenging effects on obesity and associated disorder such as diabetes, polycystic ovary syndrome, and metabolic syndrome. fractalkine (CX3CL1) and its receptor, CX3CR1, play an important role in muscle metabolism by improving insulin-sensitizing effects. Here, in this study we examined the SFN effect on CX3CL1 and its receptor, CX3CR1, in C2C12 myotubes in palmitic acid (PA)-induced oxidative stress and inflammation. The results showed that PA (750 μM) evoked lipotoxicity as a reduction in cell viability, increased IL-6 and TNF-α expression, and enhanced reactive oxygen species (ROS). However, SFN pretreatment attenuated the levels of, IL-6 and TNF-α in C2C12 myotubes exposure to PA. Moreover, SFN pretreatment up-regulated nuclear factor erythroid related factor 2 (Nrf2) /heme oxygenase-1(HO-1) pathway protein in C2C12 cells as indicated by a decrease in ROS levels. Interestingly, PA also caused an increase in CX3CL1 and CX3CR1 expression that SFN abrogated it. We also found the protective effect of SFN agonist PA-induced lipotoxicity with promotes in UCP3 gene expression...
Source: Molecular Biology Reports - Category: Molecular Biology Authors: Tags: Mol Biol Rep Source Type: research