MnO2-decorated biochar composites of coconut shell and rice husk: An efficient lithium ions adsorption-desorption performance in aqueous media.

MnO2-decorated biochar composites of coconut shell and rice husk: An efficient lithium ions adsorption-desorption performance in aqueous media. Chemosphere. 2020 Dec;260:127500 Authors: Kamran U, Park SJ Abstract Lithium (Li+) is used in various applications involving pharmaceuticals, textile dyes, and batteries. Therefore, the demand for environmentally friendly and effective materials for Li+ uptake and recovery continues to increase. Herein, rice husk (RH) and coconut shell (CS) biomasses were used to fabricate honeycomb-networked biochar (BC) precursors via slow pyrolysis. RHBC- and CSBC-based MnO2 composites were synthesized by depositing MnO2 in various ratios onto RHBC and CSBC by varying the KMnO4 concentration (2%, 3%, and 4%), followed by simple ultrasonication and heat-treatment methodologies. The structural and physicochemical properties of all of the fabricated composites were analyzed using several different instrumental methods. The batch adsorption experiments were performed for comparative Li+-adsorption studies of RHBC-Mnx and CSBC-Mnx composites by optimizing several parameters (pH, adsorbent dose, Li+ initial concentration, and contact time). The comparative adsorption analysis revealed that the RHBC-Mnx composites exhibited stronger Li+-adsorption ability than the CSBC-Mnx composites and that increasing the MnO2 deposition to 3% in both cases led to maximum Li+ adsorption capacities (62.85 mg g-1 and 57.8 mg ...
Source: Chemosphere - Category: Chemistry Authors: Tags: Chemosphere Source Type: research