Sensitivity analysis of FDG PET tumor voxel cluster radiomics and dosimetry for predicting mid-chemoradiation regional response of locally advanced lung cancer.

Sensitivity analysis of FDG PET tumor voxel cluster radiomics and dosimetry for predicting mid-chemoradiation regional response of locally advanced lung cancer. Phys Med Biol. 2020 Oct 07;65(20):205007 Authors: Duan C, Chaovalitwongse WA, Bai F, Hippe DS, Wang S, Thammasorn P, Pierce LA, Liu X, You J, Miyaoka RS, Vesselle HJ, Kinahan PE, Rengan R, Zeng J, Bowen SR Abstract We investigated the sensitivity of regional tumor response prediction to variability in voxel clustering techniques, imaging features, and machine learning algorithms in 25 patients with locally advanced non-small cell lung cancer (LA-NSCLC) enrolled on the FLARE-RT clinical trial. Metabolic tumor volumes (MTV) from pre-chemoradiation (PETpre) and mid-chemoradiation fluorodeoxyglucose-positron emission tomography (FDG PET) images (PETmid) were subdivided into K-means or hierarchical voxel clusters by standardized uptake values (SUV) and 3D-positions. MTV cluster separability was evaluated by CH index, and morphologic changes were captured by Dice similarity and centroid Euclidean distance. PETpre conventional features included SUVmean, MTV/MTV cluster size, and mean radiation dose. PETpre radiomics consisted of 41 intensity histogram and 3D texture features (PET Oncology Radiomics Test Suite) extracted from MTV or MTV clusters. Machine learning models (multiple linear regression, support vector regression, logistic regression, support vector machines) of convention...
Source: Physics in Medicine and Biology - Category: Physics Authors: Tags: Phys Med Biol Source Type: research