Dietary lipids and cardiometabolic health: a new vision of structure–activity relationship

Purpose of review The impact of dietary lipids on cardiometabolic health was mainly studied considering their fatty acid composition. This review aims to present the recent change in paradigm whereby the food matrix, the molecular and supramolecular structures of dietary lipids modulate their digestive fate and cardiometabolic impact. Recent findings Epidemiological studies have reported that the metabolic impact of full-fat dairy products is better than predictable upon saturated fatty acid richness. Milk polar lipid supplementation reduced adiposity and inflammation in rodents by modulating gut microbiota and barrier, and decreased lipid markers of cardiovascular disease risk in humans by lowering cholesterol absorption. The metabolic importance of the structure of lipid molecules carrying omega-3 (molecular carrier) has also been documented. Plant lipids exhibit specific assemblies, membrane and molecular structures with potential health benefits. Lipid emulsifiers used to stabilize fats in processed foods are not mere bystanders of lipid effects and can induce both beneficial and adverse health effects. Summary These findings open new clinical research questions aiming to further characterize the cardiometabolic fate of lipids, from digestion to bioactive metabolites, according to the food source or molecular carrier. This should be useful to elaborate food formulations for target populations and personalized dietary recommendations.
Source: Current Opinion in Clinical Nutrition and Metabolic Care - Category: Nutrition Tags: MICRONUTRIENT SUPPLEMENTATION AND FUNCTIONAL FOODS: Edited by Nathalie M. Delzenne and Henry C. Lukaski Source Type: research