Organotin (IV) complexes from Schiff bases ligands based on 2-amino-3-hydroxypyridine: synthesis, characterization, and cytotoxicity

AbstractA multicomponent reaction was used as a synthetic strategy to prepare organotin (IV) complexes, 2-amino-3-hydroxypyridine, saliciladehydes 5-R-substituted (H, CH3, OCH3, C(CH)3, F, Cl, Br, I, NO2), and dibutyltin(IV) oxide were used as starting materials. The complexes were analyzed by IR, UV –Visible, MS, NMR of1H,13C,119Sn. The complex3a was structurally identified by X-ray crystallography, which revealed a dimeric arrangement where the tin atom possess a distorted hexacoordinated environment in which the deprotonated phenolic oxygen atoms and the nitrogen atom of the azomethine from the ligand are coordinated to the metallic center, and one of the phenoxy oxygens bridges with the tin through an intermolecular interaction forming a planar Sn2O2 core. As strategy of molecular design, isosteric and bioisosteric replacement of halogens were employed. All organotin compounds were assessed for their in vitro cytotoxic activity on cancer cell lines K ‐562 (chronic myelogenous leukemia), U‐251 (glioblastoma), HCT‐15 (human colorectal cancer), MCF‐7, MDA-MB-231 (human breast cancer), and SKLU‐1 (non‐small‐cell lung cancer). They evidenced an elevated cytotoxic activity, and the inhibitory percentage values stated higher activity than thecis-platin. The K-562 and MDA-MB-231 cells were more sensitive to organotin (IV) complexes than HCT-15 and MCF-7. The organotin (IV) compounds were also tested in vivo for brine shrimp lethality to examine their toxic pro...
Source: Medicinal Chemistry Research - Category: Chemistry Source Type: research

Related Links:

ang The EVI1 gene encodes for a transcription factor with two zinc finger domains and is transcriptionally activated in a subset of myeloid leukemias. In leukemia, the transcriptional activation of EVI1 usually results from chromosomal rearrangements. Besides leukemia, EVI1 has also been linked to solid tumors including breast cancer, lung cancer, ovarian cancer and colon cancer. The MDS1/EVI1 gene is encoded by the same locus as EVI1. While EVI1 functions as a transcription repressor, MDS1/EVI1 acts as a transcription activator. The fusion protein encoded by the AML1/MDS1/EVI1 chimeric gene, resulting from chromosomal...
Source: Cancers - Category: Cancer & Oncology Authors: Tags: Review Source Type: research
Qingbin Cui1,2, Chao-Yun Cai2, Hai-Ling Gao2,3, Liang Ren1, Ning Ji2,4, Pranav Gupta2, Yuqi Yang2, Suneet Shukla5, Suresh V. Ambudkar5, Dong-Hua Yang2 and Zhe-Sheng Chen2* 1School of Public Health, Guangzhou Medical University, Guangdong, China 2Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, United States 3Department of Histology and Embryology, Clinical Medical College, Weifang Medical University, Weifang, China 4Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tian...
Source: Frontiers in Oncology - Category: Cancer & Oncology Source Type: research
In this study, we aimed to investigate the potential anti-proliferative and pro-apoptotic activities of SNG in a panel of MM cell lines (U266, IM9, MM1S, and RPMI-8226). SNG treatment of MM cells resulted in a dose-dependent decrease in cell viability through mitochondrial membrane potential loss and activation of caspase 3, 9, and cleavage of PARP. Pre-treatment of MM cells with a universal caspase inhibitor, Z-VAD-FMK, prevented SNG mediated loss of cell viability, apoptosis, and caspase activation, confirming that SNG-mediated apoptosis is caspase-dependent. The SNG-mediated apoptosis appears to be resulted from suppres...
Source: Frontiers in Oncology - Category: Cancer & Oncology Source Type: research
Markus Hartl* and Rainer Schneider Center of Molecular Biosciences (CMBI), Institute of Biochemistry, University of Innsbruck, Innsbruck, Austria The neuronal proteins GAP43 (neuromodulin), MARCKS, and BASP1 are highly expressed in the growth cones of nerve cells where they are involved in signal transmission and cytoskeleton organization. Although their primary structures are unrelated, these signaling proteins share several structural properties like fatty acid modification, and the presence of cationic effector domains. GAP43, MARCKS, and BASP1 bind to cell membrane phospholipids, a process reversibly regulate...
Source: Frontiers in Oncology - Category: Cancer & Oncology Source Type: research
This study was supported by the Shanghai Sailing Program [grant number 17YF1425200, 2017]; Chinese National Natural Science Funding [grant number 81702249, 2017]; Science and Technology Commission of Shanghai Municipality [grant number 17511103403, 2017]; The funder has no role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript. Conflict of Interest Statement The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest. Acknowledgments We acknowledge the ex...
Source: Frontiers in Oncology - Category: Cancer & Oncology Source Type: research
Discussion Suppressor of cytokine signaling 1 is an essential molecule for maintaining immune homeostasis and subverting inflammation. Disorders arising from excess inflammation or SOCS1 deficiency can be potentially treated with SOCS1 mimetics (Ahmed et al., 2015). While SOCS1 has promising potential in many disorders, it should be noted that new targets and actions of SOCS1 are still being discovered and not all the effects of this protein are beneficial in autoimmune diseases and cancer. For instance, SOCS1 degrades IRS1 and IRS2, required for insulin signaling, via the SOCS Box domain, thus, limiting its potential in ...
Source: Frontiers in Pharmacology - Category: Drugs & Pharmacology Source Type: research
Publication date: Available online 14 February 2017 Source:Pharmacology & Therapeutics Author(s): Jin Tae Hong, Dong Ju Son, Chong Kil Lee, Do-Young Yoon, Dong Hun Lee, Mi Hee Park Interleukin-32 (IL-32) is a novel cytokine involved in inflammation and cancer development. IL-32 gene consists of eight small exons, and IL-32 mRNA has nine alternative spliced isoforms, and was thought to be secreted because it contains an internal signal sequence and lacks a transmembrane region. IL-32 is initially expressed selectively in activated T cells by mitogen and activated NK cells and their expression is strongly augmented by m...
Source: Pharmacology and Therapeutics - Category: Drugs & Pharmacology Source Type: research
The synthesis of monomeric pentacoordinated diorganotin(IV) complexes derived from pyridoxal hydrochloride and 4‐ or 5‐R‐substituted ortho‐aminophenols is described. The complexes were characterized using UV–visible, infrared, mass, 1H NMR, 13C NMR and 119Sn NMR spectral techniques. The molecular structure of three complexes was established using X‐ray diffraction: 3b and 3d show a distorted trigonal bipyramidal geometry, in which the basal plane is defined by the butyl groups and the iminic nitrogen atom, whereas the oxygen atoms from the aromatic ring occupy axial positions; in contrast, complex 3e exhibi...
Source: Applied Organometallic Chemistry - Category: Chemistry Authors: Tags: FULL PAPER Source Type: research
aradağ O, Kasifoglu N, Arslantas D, Sahin F, Keser G, Yavuz S, Birlik M, Onat AM Abstract Systemic sclerosis (SSc) is an autoimmune connective tissue disease with multisystem involvement. An increased incidence of cancer in SSc patients compared with the general population has been reported in several reports. Our aims in this study were to determine the most common malignancies and to investigate the possible risk factors for the development of malignancy in patients with SSc. Three hundred forty SSc patients from 13 centers were included to the study. Data of the patients were obtained by evaluating their medic...
Source: Clinical Lymphoma and Myeloma - Category: Cancer & Oncology Authors: Tags: Clin Rheumatol Source Type: research
The recent discovery of oncogenic drivers and subsequent development of novel targeted strategies has significantly added to the therapeutic armamentarium of anti-cancer therapies. Targeting BCR-ABL in Chronic Myeloid Leukemia (CML) or HER2 in breast cancer has led to practice-changing clinical benefits, while promising therapeutic responses have been achieved by precision medicine approaches in EGFR mutant lung cancer, colorectal cancer and BRAF mutant melanoma. However, although initial therapeutic responses to targeted therapies can be substantial, many patients will develop disease progression within 6-12 months.
Source: Seminars in Oncology - Category: Cancer & Oncology Authors: Source Type: research
More News: Breast Cancer | Cancer | Cancer & Oncology | Chemistry | Chronic Leukemia | Chronic Myeloid Leukaemia | Colorectal Cancer | Environmental Health | Leukemia | Lung Cancer | Toxicology