Biomimetic double-sided polypropylene mesh modified by DOPA and ofloxacin loaded carboxyethyl chitosan/polyvinyl alcohol-polycaprolactone nanofibers for potential hernia repair applications.

Biomimetic double-sided polypropylene mesh modified by DOPA and ofloxacin loaded carboxyethyl chitosan/polyvinyl alcohol-polycaprolactone nanofibers for potential hernia repair applications. Int J Biol Macromol. 2020 Oct 01;: Authors: Shokrollahi M, Bahrami SH, Nazarpak MH, Solouk A Abstract Polypropylene (PP) meshes are the most widely used as hernioplasty prostheses. As far as hernia repair is concerned, bacterial contamination and tissue adhesion would be the clinical issues. Moreover, an optimal mesh should assist the healing process of hernia defect and avoid undesired prosthesis displacements. In this present study, the commercial hernia mesh was modified to solve the mentioned problems. Accordingly, a new bi-functional PP mesh with anti-adhesion and antibacterial properties on the front and adhesion properties (reduce undesired displacements) on the backside was prepared. The backside of PP mesh was coated with polycaprolactone (PCL) nanofibers modified by mussel-inspired L-3,4-dihydroxyphenylalanine (L-DOPA) bioadhesive. The front side was composed of two different nanofibrous mats, including hybrid and two-layered mats with different antibacterial properties, drug release, and biodegradation behavior, which were based on PCL nanofibers and biomacromolecule carboxyethyl-chitosan (CECS)/polyvinyl alcohol (PVA) nanofibers containing different ofloxacin amounts. The anti-adhesion, antibacterial, and biocompatibility studies were...
Source: International Journal of Biological Macromolecules - Category: Biochemistry Authors: Tags: Int J Biol Macromol Source Type: research