Mesenchymal stem cells-derived mitochondria transplantation mitigates I/R-induced injury, abolishes I/R-induced apoptosis, and restores motor function in acute ischemia stroke rat model.

Mesenchymal stem cells-derived mitochondria transplantation mitigates I/R-induced injury, abolishes I/R-induced apoptosis, and restores motor function in acute ischemia stroke rat model. Brain Res Bull. 2020 Sep 30;: Authors: Pourmohammadi-Bejarpasi Z, Roushandeh AM, Saberi A, Kheirandish-Rostami M, Toosi SMR, Jahanian-Najafabadi A, Tomita K, Kuwahara Y, Sato T, Roudkenar MH Abstract Acute ischemia stroke (AIS) is one of the leading causes of mortality and disability worldwide, and its neurological impacts are devastating and permanent. There is no efficient and real treatment for acute ischemia stroke so far. Therefore, development of efficient therapeutic strategies is under focus of investigations by basic and clinical scientists. Brain is one of the organs with high energy consumption and metabolism. Hence, its functionality is highly dependent on mitochondrial activity and integrity. Therefore, mitochondria play a vital homeostatic role in neurons physiology and mitochondrial dysfunction implications have been reported in a variety of nervous system diseases including acute ischemia stroke. In an attempt to investigate and introduce a novel potential therapeutic strategy for AIS, we isolated healthy mitochondria from human umbilical cord derived mesenchymal stem cells (hUC-MSCs) followed by their intracerebroventricular transplantation in a rat model of ischemia, i.e. middle cerebral artery occlusion (MCAO). Here we report that ...
Source: Brain Research Bulletin - Category: Neurology Authors: Tags: Brain Res Bull Source Type: research